Derivate des Borols, XVI¹⁾

Bis(borol)nickel-Komplexe²⁾

Gerhard E. Herberich*, Ulli Englert, Martin Hostalek und Ralf Laven

Institut für Anorganische Chemie der Technischen Hochschule Aachen, Professor-Pirlet-Straße 1, D-5100 Aachen

Eingegangen am 7. Mai 1990

Key Words: (Borole)nickel complexes / Nucleophilic substitution at boron / 1H-Borole / Dihydro-1H-borolediide

Derivatives of Borole, XVI¹). - Bis(borole)nickel Complexes²)

The dilithium 1-(dialkylamino)dihydroborolediides Li₂[C₄H₄-BNR₂] (**2a,b**: R = Me, Et) react with NiCl₂ · DME to give bis(borole)nickel complexes Ni(C₄H₄BNR₂)₂. Nucleophilic substitution reactions are used to produce a large variety of derivatives Ni(C₄H₄BR)₂ **1** (e.g. R = H, tBu, F, Cl, Br, I, OH, OMe). Treatment of Ni(C₄H₄BCl)₂ (**1g**) with LiO(CH₂)₃OLi in THF produces a polymer and a dinuclear complex $\langle \mu$ -{ $\eta^5:\eta^5-$ [(CH₂)₃(OBC₄H₄)₂] \rangle ₂Ni₂ (**3**) which crystallizes from CH₂Cl₂ as solvate **3** · CH₂Cl₂. The complexes **1g** and **3** · CH₂Cl₂ are characterized by X-ray diffraction work. Barriers to internal

ring-ring rotation are measured by variable-temperature NMR spectroscopy. The B-H bond of Ni(C₄H₄BH)₂ (**1 a**) is remarkably inert and does not react with H₂O or with carboxylic acids in THF at room temperature. With PhCHO slow formation of the benzyloxy compound Ni(C₄H₄BOCH₂Ph)₂ (**1 m**) is observed at 100°C. For typical complexes such as the phenyl derivative **1e** cyclic voltammetry in CH₂Cl₂ reveals an irreversible oxidation at 1.32 and a quasi-reversible reduction at -1.37 V vs. SCE.

Bis(1*H*-borol)nickel-Komplexe 1 und insbesondere deren Grundkörper 1a sind isoelektronisch mit Ferrocen. Wir haben bereits früher das Methyl-Derivat $1b^{3,4}$, das Phenyl-Derivat $1e^{3,4}$ und das Diisopropylamino-Derivat $1p^{5}$ beschrieben. Hier behandeln wir die systematische Entwicklung dieser Stoffklasse, die mit Hilfe der neuen Dilithium-1-(dialkylamino)dihydroboroldiide $2a, b^{1}$ in großer Breite gut zugänglich gemacht werden konnte.

Ergebnisse

Synthesen

Die Dilithium-1-(dialkylamino)dihydroboroldiide $2a, b^{1}$ ergeben, wie bereits früher für die Diisopropylamino-Verbindung 2c gezeigt⁵⁾, bei der Umsetzung mit NiCl₂ · DME $(DME = MeOCH_2CH_2OMe)$ die Bis $\{\eta^{5}-[1-(dialkylami$ $no)borol]\}$ nickel-Komplexe **1n**, o.

$$2 \operatorname{Li}_{2}[C_{4}H_{4}BNR_{2}] + 2 \operatorname{Ni}Cl_{2} \cdot DME \rightarrow \operatorname{Ni}(C_{4}H_{4}BNR_{2})_{2} + \operatorname{Ni}$$

$$2 \qquad 1n-p$$

$$(R = Me. \operatorname{Et.} iPr)$$

Die Aminoborol-Derivate 1n, o können durch Substitution der Gruppe am Bor-Atom in eine Vielfalt anderer Bis-(borol)nickel-Komplexe umgewandelt werden. Im Gegensatz hierzu ist die vor einigen Jahren beschriebene Diisopropylamino-Verbindung 1p substitutionsinert. So reagieren die

Tab. 1. Reaktionen von Bis(borol)nickel-Komplexen

Umsetzung	Ergebnis
1 l, n, o/B F ₃	11 · BF ₃ , 1n · BF ₃ , 1o · BF ₃
11.n.o/BCl ₃	1g
11, n, o/BBr ₃	1h
1 l, n, o /BI ₃	Zersetzung
$1 l/A l_2 Me_6$	1b Ü
$1 n, o/Al_2Me_6$	Adduktbildung, Zusammensetzung nicht bestimmt
1g/DIBAH	1a
1 g/LiR	1b,c,d,e (R = Me, Bu, tBu, Ph)
1g/TlF	1f , , , , , , , , , , , , , , , , , , ,
$1 g/H_2O/NEt_3$	1 k
1g/LiOMe	11 (in besonders reiner Form)
1 a/BI3	11
1 a/LiŘ	$\mathbf{1c,d} (\mathbf{R} = \mathbf{Bu}, t\mathbf{Bu})$
1a/PhCHO	1 m

Dimethylamino- und die Diethylamino-Verbindung 1n und o mit Methanol im Verlauf einiger Stunden zur Methoxy-Verbindung 1l. Die Diisopropylamino-Verbindung 1p wird dagegen in siedendem Methanol nicht angegriffen: Die nucleophile Substitution ist bei 1p sterisch blockiert⁷⁾.

Weitere Substitutionsreaktionen gehen von den Amino-Verbindungen 1n,0 oder von der Methoxy-Verbindung 11 aus. Die durchgeführten Reaktionen sind in Tab. 1 aufgelistet.

Einige Reaktionen bleiben auf der Stufe der Adduktbildung stehen, so insbesondere die Reaktionen mit Bortrifluorid. Zur Darstellung des Fluor-Derivats **1f** war deshalb der Umweg einer Fluoridierung des Chlor-Derivats **1g** notwendig. Dessen vorzügliche Kristallisation und hohe Reaktivität machte es auch für die Darstellung von Organyl-Derivaten wie **1b**, c, e und von Alkoxy-Derivaten wie **11** besonders geeignet. Bei der Umsetzung von **1g** mit dem Dilithio-Derivat des 1,3-Propandiols wird nicht eine einfache 1,3-Propandioxy-Verbrückung der beiden Ringe erzielt; vielmehr werden nebeneinander ein schwerlösliches (nicht näher charakterisiertes) Komplexpolymer und ein doppelt verbrückter Zweikern-Komplex **3** gebildet, der aus Dichlormethan als Solvat **3** · CH₂Cl₂ kristallisiert.

Tab. 2. ¹H- und ¹¹B-NMR-Spektren

Kom- plex	¹ H-N Bor Rin 2-/5- H	MR ^{a)} tol- ng ^{c)} 3-/4- H	sonstige Gruppen	Solvens	δ(¹¹ B) ^{b)}
1a 1c 1d 1f 1g 1h 1i 1k 1l 1l 1n 10	4.77 4.33 4.44 4.01 4.25 4.33 4.79 3.74 3.98 4.00 3.96 3.82	5.27 5.30 5.21 4.97 4.91 4.97 5.35 5.42 5.21 5.42 5.34 5.34 5.31	- ^{d)} 0.92 m, 1.56 m 1.10 s 5.91 s 1.23 s 4.80 s, 7.65 m 2.57 s 2.87 q, 1.03 t ^{e)}	$ \begin{bmatrix} D_6 \end{bmatrix} Benzol \\ \begin{bmatrix} D_8 \end{bmatrix} Toluol \\ \end{bmatrix} Toluol \\ \begin{bmatrix} D_8 \end{bmatrix} Toluol \\ \end{bmatrix} Toluol \\ \begin{bmatrix} D_8 \end{bmatrix} Toluol \\ \begin{bmatrix} D_8 \end{bmatrix} Toluol \\ \end{bmatrix} To$	17 (125) 29 32 29 (53) 30 24 15 28 29 31 26 26 26
5 1n · BF₃ 1l · BF₃	4.08 ^{f)} 4.10	5.57 5.02	4.0 m, 1.93 quin ⁵ 3.46 s	$[D_8]$ Toluol $[D_8]$ Toluol	29 27, -1 27, -1

^{a)} δ -Werte, gegen int. TMS. – ^{b)} Gegen ext. BF₃ · OEt₂, in Klammern ¹J [Hz]. – ^{e)} Zwei Multipletts eines AA'BB'-Systems mit ³J₂₃ + ⁴J₂₄ ≈ 6.8 Hz. – ^{d)} Nicht beobachtet. – ^{e)} J = 7 Hz. – ^{f)} Nicht gemessen.

Die Hydrido-Verbindung 1a ist im engsten Sinn isoelektronisch mit Ferrocen und enthält eine B-H-Bindung, deren Reaktivität besondere Aufmerksamkeit verdient. 1a wird durch Chromatographie an Aluminiumoxid und Sublimation gereinigt. Nicht ganz reine Proben von 1a neigen zu spontaner Zersetzung. Mit verdünnter Säure in THF tritt im Verlauf von 24 Stunden keine Hydrolyse ein. Die typische hohe Reaktivität des Diborans gegen Olefine und Acetylene ist völlig unterdrückt. So reagiert 1a z.B. beim Erhitzen (80° C, 1 d) in PhC \equiv CH nicht. Mit Benzaldehyd (100° C, 5 h) konnte langsame Insertion erzwungen werden. Andererseits kann 1a im Gegensatz zu den Organyl-Derivaten 1b-e nucleophil angegriffen werden und ergibt mit Lithiumorganylen Substitution am Bor-Atom.

Die NMR-Daten der neuen Verbindungen sind in Tab. 2 und 3 aufgelistet.

Tab. 3. ¹³C-NMR-Spektren^{a)}

Kom- plex	Bord C-2/-5	ol-Ring C-3/-4	sonstige Grup- pen	Solvens
1a	91.7 dm (150)	101.1 dd (172/8)		[D ₈]Toluol
1 d	85.8 dm (159)	97.7 dm (170)	31.5 q (127)	[D ₈]Toluol
1f	77.5 m	96.9 dd (172/7.5)		[D ₈]Toluol
1 g	88.3 dm (161)	98.8 dm (179)		[D ₈]Toluol
1 h ^{c)}	91.6 m	99.9 m		[D ₈]Toluol
1 k	77.8 dm (167)	97.2 dm (170)		[D ₆]Aceton
11	76.3 dm (149)	96.7 dm (170)	55.6 q (141)	[D ₈]Toluol
1 n	75.0 dm _ ^{b)}	96.2 dm (170)	40.6 q (132)	[D ₈]Toluol
10	75.6 dm (155)	96.4 dm (167)	15.6 t, 44.2 q (133), (133)	[D ₈]Toluol
3	76.2 d (154)	96.7 dm (171)	34.3 t, 65.2 t (130) (143)	[D ₈]Toluol
1I BF ₃	79.6 dm _ ^{b)}	98.2 dm (180)	d)	CD_2Cl_2

^{a)} δ -Werte gegen int. TMS; $J({}^{13}C, {}^{1}H)$ [Hz]. – ^{b)} Breites Signal bis 188 K. – ⁶⁾ ${}^{13}C{}^{1}H$ -Daten. – ^{d)} Vom Lösungsmittelsignal überdeckt.

Insgesamt sind Bis(borol)nickel-Komplexe nunmehr in großer Breite zugänglich. Nucleophile Substitutionen am Bor-Atom π -gebundener Organoborane sind von uns 1971 erstmals beobachtet worden^{8,9)} und seither besonders an Komplexen mit η^5 -Divinylboran-Liganden^{9,10)}, η^5 -2,5-Dihydro-1,2,5-thiadiborol-Liganden¹¹⁾, η^6 -1,4-Dibora-2,5-cyclohexadien-Liganden¹²⁾ und an η^5 -2,3,4,5-Tetraphenylborol-Liganden¹³⁾ präparativ genutzt worden.

Struktur von Bis(1-chlorborol)nickel (1g)

Einige repräsentative Strukturen von (Borol)metall-Komplexen mit monofacial gebundenen Borol-Liganden sind bereits beschrieben worden, so u.a. von $Fe(CO)_3(C_4H_4BPh)^{14}$, $Cr(CO)_4(C_4H_4BPh)^{15}$, $RuHCl(PPh_3)_2(C_4H_4BPh)^{16}$, μ -(C₄H₄-BMe)[Co(C₄H₄BMe)]₂¹⁷⁾ und CpCo(C₄Ph₄BH)^{13)}. An der Struktur der Bis(ligand)nickel-Komplexe 1 interessierte besonders die Grundzustandskonformation.

Für die strukturelle Charakterisierung der Komplexe 1 wurde die Chlor-Verbindung 1g als Beispiel gewählt. Die Strukturbestimmung (Tab. 4) erwies sich jedoch als nichttrivial. Das Zellvolumen entsprach dem für zwei Formeleinheiten erwarteten Wert. Die systematische Reflexbedingung 0k0, k = 2n, wies auf eine zweizählige Schraubenachse hin. Die Lösung in der nicht-zentrosymmetrischen Raumgruppe P21 erbrachte eine kolumnare Stapelstruktur, in der das fehlgeordnete Nickel-Atom zwei allgemeine Lagen mit unterschiedlichen Multiplizitäten (0.6 und 0.4) besetzt. Überstrukturreflexe für eine Vergrößerung der Elementarzelle wurden nicht gefunden. Ein Lösungsversuch in der zentrosymmetrischen Raumgruppe $P2_1/c$ mit einem Nickel-Atom mit Multiplizität 0.5 auf allgemeiner Lage erbrachte einen deutlich schlechteren gewichteten Gütefaktor (0.120 gegenüber 0.053), höhere Temperaturfaktoren in der Verfeinerung und besonders eine sehr ungleiche Verteilung der Gütefaktoren auf verschiedene Reflexklassen. Zudem erfüllten die Reflexe der Klasse h0l nicht die für eine c-Gleitspiegelebene zu erwartende Bedingung l = 2n.

Tab. 4. Atomkoordinaten und Temperaturkoeffizienten von 1g. Die Temperaturfaktoren sind in der Form ihrer isotropen Äquivalente angegeben [10⁴ pm²]

Atom	x	у	z	^B eq
Ni(1)	0.4848(1)	0.970	0.8634(1)	2.71(1)
Ni(2)	0.4701(2)	0.9714(1)	0.3508(2)	2.60(2)
Cl(1)	0.9040(2)	0.6494(1)	0.4865(2)	4.64(3)
C1(2)	0.9041(2)	1.2927(1)	0.9867(2)	4.69(3)
C(11)	0.4352(7)	0.5681(5)	0.3693(7)	3.69(9)
C(12)	0.3330(7)	0.4651(5)	0.3457(6)	4.07(9)
C(13)	0.4918(9)	0.3739(5)	0.3832(7)	4.2(1)
C(14)	0,7103(9)	0.4168(5)	0.4426(8)	4.5(1)
C(21)	0.4476(7)	1.3686(4)	0.8743(6)	3.05(8)
C(22)	0.3351(7)	1.4733(6)	0.8464(6)	4.20(9)
C(23)	0.4907(9)	1.5645(5)	0.8855(7)	4.5(1)
C(24)	0.7024(7)	1.5233(4)	0.9358(6)	3,35(8)
B(1)	0.6910(7)	0.5458(5)	0.4295(7)	2.92(9)
B(2)	0.6843(9)	1.3924(4)	0.9353(7)	3.3(1)

Als Folge der Fehlordnung im Kristall von 1g ist die Geometrie der Ringe und der Ring – Metall-Bindung nicht sehr genau bestimmbar. Dagegen ist die Rotationsstellung der beiden Ringe gegeneinander von dieser Problematik kaum berührt; für die beiden unterschiedlichen Koordinationsgeometrien werden ähnliche Winkel¹⁸⁾ von 80.6 und 87.3° gefunden. Die Barriere der Ring-Ring-Rotation dürfte von gleicher Größenordnung wie bei der Phenyl-Verbindung 1e ($32 \pm 4 \text{ kJ/mol}^3$) und damit wesentlich größer als die Kristallgitterkräfte sein. Das bedeutet, daß die gefundene Konformation ziemlich gut der Grundzustandskonformation des Moleküls entspricht. Der in einem weiten Sinn vergleichbare Bis(ligand)nickel-Komplex Ni[PhB(CHCH)₂-SiMe₂]₂ des 1,4-Silabora-2,5-cyclohexadiens hat einen Torsionswinkel von 88.1° ¹⁹.

Struktur des Zweikernkomplexes 3 · CH₂Cl₂

Bei der Röntgen-Strukturbestimmung von $3 \cdot CH_2Cl_2$ (Abb. 1, Tab. 5 und 6) interessierte die Art der Verknüpfung der 1,3-Propandioxy-Kette mit dem Bis(ligand)nickel-Sandwichfragment. Die Substanz $3 \cdot CH_2Cl_2$ kristallisiert in der monoklinen zentrosymmetrischen Raumgruppe C2/c. Das Zweikernmolekül 3 besitzt im Kristall kristallographische zweizählige Drehsymmetrie. Das Solvatmolekül CH_2Cl_2 besetzt eine spezielle Lage 4e.

Abb. 1. Molekülstruktur von 3 mit Atomnumerierung

Tab. 5. Atomkoordinaten und Temperaturkoeffizienten von 3. Die Temperaturfaktoren sind in der Form ihrer isotropen Äquivalente angegeben [10⁴ pm²]

Atom	x	у	z	^B eq
Ni	0.21593(8)	0.11821(9)	0.3039(1)	3.41(2)
C(11)	0.1906(6)	0.2692(7)	0.3076(8)	4.2(3)
C(12)	0.2678(6)	0.2453(8)	0.3441(8)	4.7(3)
C(13)	0.3025(6)	0.2030(9)	0.2536(9)	5.4(3)
C(14)	0.2448(6)	0.1899(7)	0.1563(8)	4.4(3)
B(1)	0.1720(7)	0.2392(9)	0.181(1)	3.9(3)
0(1)	0.1024(4)	0.2559(5)	0.1121(5)	4.6(2)
C(1)	0.0890(6)	0.216(1)	-0.0038(8)	6.8(3)
C(2)	0.0048(6)	0.198(1)	-0.0366(9)	6.9(3)
C(3)	-0.0281(5)	0.1340(9)	0.0425(8)	5.1(3)
0(2)	-0.1043(3)	0.1050(5)	-0.0005(5)	4.0(2)
B(2)	-0.1473(7)	0.0585(9)	0.0711(9)	3.7(3)
c(2i)	-0.1239(6)	0.0238(7)	0.2009(8)	3.9(2)
C(22)	-0.1847(6)	-0.0221(8)	0.2332(9)	5.1(3)
C(23)	-0.2508(6)	-0.0206(7)	0.1406(8)	4.6(3)
C(24)	-0.2310(6)	0.0295(7)	0.0460(8)	3.9(2)
c` ´	0.500	0.073(2)	0.750	16(1)
Cl	0.5534(5)	0.0041(6)	0.855(1)	23.1(3)

Tab. 6. Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] von 3

Ni-C(11) Ni-C(12) Ni-C(13) Ni-C(14) Ni-B(1)	207.3(6) 195.6(6) 206.2(6) 212.3(6) 223.4(7)	Ni-C(21) Ni-C(22) Ni-C(23) Ni-C(24) Ni-B(2)	205.0(6) 198.9(7) 203.5(6) 211.9(5) 220.2(7)
C(11)-C(12) C(12)-C(13) C(13)-C(14) C(11)-B(1) C(14)-B(1)	139.8(8) 142.9(9) 142.4(8) 153.8(9) 151.0(9)	C(21)-C(22) C(22)-C(23) C(23)-C(24) C(21)-B(2) C(24)-B(2)	134.2(8) 147.0(8) 139.5(8) 159.5(9) 150.9(9)
B(1)-O(1) O(1)-C(1) C(1)-C(2)	137.9(8) 145.8(7) 149.1(9)	B(2)-O(2) O(2)-C(3) C(2)-C(3)	137.0(8) 141.4(6) 145.7(8)
c-cl	170.8(9)		
$\frac{C(11)-C(12)-C(1)}{C(12)-C(13)-C(1)}$ $C(13)-C(14)-B(1)$ $C(12)-C(14)-B(1)$ $C(11)-B(1)-C(14)$ $O(1)-B(1)-C(14)$ $O(1)-B(1)-C(14)$	3) 111.7(6) 4) 108.6(6)) 108.1(6)) 106.9(6)) 104.1(6) 124.6(7) 131.3(6)	C(21)-C(22)-C C(22)-C(23)-C C(23)-C(24)-B C(22)-C(21)-B C(21)-B(2)-C(1 O(2)-B(2)-C(2 O(2)-B(2)-C(2) C(2)-B(2)-C(2)	(23) 110.8(6) (24) 109.7(6) (2) 109.0(5) (2) 108.1(6) 24) 102.3(6) 1) 130.0(6) 4) 127.8(5)
c1-c-c1	114(1)		

Das Molekül 3 besteht aus zwei Bis(borol)nickel-Sandwichbausteinen, die durch zwei Trimethylendioxy-Brücken verknüpft sind. Die beiden Sandwichbausteine sind um 55° gegeneinander verkippt. Die geometrischen Zwänge der Verbrückung führen zu einem Interplanarwinkel von 3° zwischen den beiden Borol-Ringen. Die Rotationsstellung mit einem Torsionswinkel von 85.0° steht in Einklang mit der für 1g gefundenen Grundzustandskonformation. Das Abstandsmuster im Borol-Ring (Mittelwerte: C-2-C-3, C-4-C-5 139.0, C-3-C-4 145.0 und B-C-2,C-5 153.6 pm) zeigt im übrigen, daß das LUMO des Borol-Liganden nur mäßig durch Metall-Ligand-Rückbindung aufgefüllt wird. Dies entspricht für ein d¹⁰-Zentralmetall (bei Abwesenheit starker Donatoren als Gegenliganden) ganz der Erwartung.

Konstitution und Spektren

In allen Komplexen der Bis(borol)nickel-Reihe liegen, wie schon früher belegt³⁻⁵, Sandwichkomplexe mit niedrigen Barrieren für die Rotation der beiden Ringliganden gegeneinander vor. Im ¹H-NMR-Spektrum sieht man wegen der schnellen Rotation der Ringe gegeneinander bei Raumtemperatur entsprechend effektiver C_{2v} -Symmetrie ein AA'BB'-System (in Toluol typisch bei $\delta = 4.9 - 5.3$ für 3/4-H und 3.8-4.8 für 2/5-H). Die Verschiebungsdifferenz zwischen den beiden Multipletts des AA'BB'-Systems ist mäßig für (Borol)metall-Gruppierungen A mit wenig gestörter cyclischer Konjugation des Liganden; sie wird groß für Systeme **B** mit Substituenten am Bor-Atom, die zu einer π -Wechselwirkung mit dem Bor-Atom befähigt sind. Dieser Einfluß folgt der Reihe N > O > F >übrige Substituenten. Diese π-Wechselwirkungen sind lockernd bezüglich der Metall-Bor-Bindung und machen den Liganden Dien-ähnlich; dies haben wir am Beispiel von 1-(Diisopropylamino)borol-Komplexen ausführlich gezeigt²⁰⁾.

Im ¹³C-NMR-Spektrum beobachtet man wieder schnelle Rotation der Ringe gegeneinander, d. h. zwei Signale für die Ring-C-Atome. Die chemischen Verschiebungen sind sehr charakteristisch (typisch bei $\delta = 99.5 - 101$ für C-3/4 und 90-92 für C-2/5) und nur bei Substituenten mit π -Wechselwirkungen zum Bor treten Resonanzen bei jeweils höherem Feld auf (bis $\delta = 96$ für C-3/4 und 75 für C-2/5).

Bei einigen Komplexen konnten in Tieftemperaturspektren die Grundzustände mit C_2 -Symmetrie beobachtet werden, so daß sich Rotationsbarrieren aus Frequenzdifferenzen und Koaleszenztemperaturen abschätzen ließen. Für die Phenyl-Verbindung 1e ist die Barriere der Ring-Ring-Rotation sehr niedrig und beträgt 32 \pm 4 kJ/mol³). Für die Dialkylamino-Verbindungen 1n,0 sind zwei innere Bewegungen zu betrachten, nämlich die Rotation der Ringe gegeneinander und die Drehung der Dialkylamino-Gruppe um die B-N-Bindung. Die Barriere der Ring-Ring-Rotation beträgt 50 \pm 3 kJ/mol für 1n und 56 \pm 3 kJ/mol für 10. Die Barriere der behinderten Rotation um die B-N-Bindung muß hoch sein, kann aber den Spektren von 1n.0 nicht entnommen werden; für die Diisopropylamino-Verbindung 1p ist sie zu 72 \pm 3 kJ/mol bestimmt worden^{3b)}. Für die Hydroxy-Verbindung 1k und die Alkoxy-Verbindung 3 wurden dynamische Prozesse mit Barrieren von 45 \pm 4 und 47 \pm 4 kJ/mol gefunden, bei denen es sich höchst wahrscheinlich ebenfalls um die Ring-Ring-Rotation handelt. Insgesamt ergibt sich eine Zunahme der Barriere der Ring-Ring-Rotation in der Reihe $1e \ll 1k < 3 < 1n < 1$ **10.** Diese Reihe entspricht im wesentlichen zunehmenden π -Wechselwirkungen und damit schwächer werdender cyclischer Konjugation. Wir erinnern in diesem Zusammenhang daran, daß Bis(ligand)nickel-Komplexe bei völliger Unterbrechung der cyclischen Konjugation starr sind; so zeigt der 1-Sila-4-bora-2,5-cyclohexadien-Komplex Ni-[PhB(CHCH)₂SiMe₂]₂ im ¹H-NMR-Spektrum noch bei 90°C keine Anzeichen einer internen Rotation¹⁹.

Redox-Eigenschaften

Zur Charakterisierung der Redox-Eigenschaften haben wir orientierende cyclovoltammetrische Messungen durchgeführt (Tab. 7). Die Komplexe 1 zeigen eine irreversible Oxidation (typisch bei 1.4 V) und eine zumeist (ausgenommen besonders 1g und 1k) quasireversible Reduktion (typisch bei -1.4 V). Zwei Substituenteneinflüsse sind erkennbar. Substituenten mit π -Wechselwirkungen zum Bor vermindern das Rückbindungsvermögen des Borol-Liganden (in der Reihe N > O > F) und verschieben alle Redoxpotentiale kathodisch. Stark elektronegative Substituenten senken die Energie des Borol-LUMOs durch ihren induktiven Effekt und verschieben die Redoxpotentiale anodisch. Im Fall der Fluor-Verbindung 1f kompensieren sich beide Einflüsse weitgehend.

Tab. 7. Cyclovoltammetrische Daten für Komplexe 1 in CH₂Cl₂^{a)}

Komplex (R)	Ер [V]	$egin{array}{c} E^{\mathrm{a}}_{\mathrm{p}} \ [\mathrm{V}] \end{array}$	<i>E</i> ^{-/0} [V]	Δ <i>E</i> [mV]	i ^k /i ^a p	E ^{0/+} [V]
$ \frac{1n (NMe_2)}{10 (NEt_2)} \\ \frac{1}{1p} (NiPr_2) $	 ≤ -2.0 ≤ -2.0 ≤ -2.0 					0.61 0.54 0.46
1k (OH) "	-1.78	-1.56	-1.67	220	0.4	1.06
1 b (Me)	-1.60	-1.49	-1.55	120	0.7	1.39
le (Ph)	-1.43	-1.30	-1.37	125	0.8	1.32
11 (F)	-1.41	-1.29	-1.35	120	0.9	1.37
1a (H)	-1.35	-1.24	-1.30	110	1.0	1.47
1g (Cl)	1.23	-1.03	-1.13	215	0.3	≥1.60
1h (Br)	-1.01	-0.93	-0.97	85	0.7	≥1.60

^{a)} Potentiale, gemessen gegen die gesättigte Kalomelelektrode.

Schlußbemerkung

Bisher konnten (Borol)metall-Komplexe in der Regel (Ausnahmen in Lit.^{5,13,14,16,21)}) nur mit Organyl-Substituenten am Bor-Atom erhalten werden. Wir haben hier am Beispiel der Komplexe 1 gezeigt, daß diese Einschränkung nun mit Hilfe der neuen Dilithium-1-(dialkylamino)dihydroboroldiide $2a, b^{1}$ überwunden ist. Wir danken Herrn Prof. Dr. U. Koelle für seine Hilfe bei den elektrochemischen Messungen und den Herren cand. chem. W. Bettray und cand. chem. R. Greven für ihre Mitarbeit im Rahmen eines Forschungspraktikums. Diese Arbeit wurde durch die Deutsche Forschungsgemeinschaft und den Fonds der Chemischen Industrie großzügig gefördert.

Experimenteller Teil

Alle Versuche wurden unter Stickstoff als Schutzgas mit absolutierten, sauerstofffreien Lösungsmitteln durchgeführt. – Die verwendeten Filterhilfsmittel Seesand (Riedel de Haen, gereinigt) und Kieselgur (Merck) wurden bei 300 °C ausgeheizt, i. Vak. abgekühlt und unter Stickstoff aufbewahrt. – Aluminiumoxid zur Chromatographie (Woelm, N-Super O) wurde bei 300 °C i. Vak. ausgeheizt und unter Stickstoff mit 7% sauerstofffreiem Wasser desaktiviert. – NMR: WP-80 PFT (¹H, 80 MHz, bis –80 °C), Bruker; JNM-PS 100 (¹¹B, 32.08 MHz), Jeol; WH-270 PFT (¹³C, 67.88 MHz, bis –95 °C), Bruker. – MS: Varian MAT CH-5-DF (nominelle Elektronenenergie 70 eV). – Präparative Daten und Analysen enthält Tab. 8.

Tab. 8. Präparative Daten und C,H-Analysen

Kom- plex	Summenformel Molmasse (MS) ^{a)}	Analysen Ber./Gef. C H		Farbe	Schmp./ Zers. [°C]
1 a	$C_8H_{10}B_2Ni$ 186.5 (186)	51.34 51.52	5.23 5.41	orange	65/65
1 d	C ₁₆ H ₂₆ B ₂ Ni 298.7 (298)	64.41 64.33	8.66 8.77	orangerot	31/>250
1 f	C ₈ H ₈ B ₂ F ₂ Ni 222.5 (222)	43.57 43.19	3.49 3.63	gelb	80/ ^{b)}
1 g	C ₈ H ₈ B ₂ Cl ₂ Ni 255.4 (254)	37.39 37.62	3.07 3.16	orangerot	159/>250
1 h	C ₈ H ₈ B ₂ Br ₂ Ni 344.3 (344)	27.84 27.91	2.37 2.34	braunrot	166/>240
1i	C ₈ H ₈ B ₂ I ₂ Ni 438.3 (438)	c)	c)	orange- braun	c)
1 k	C ₈ H ₁₀ B ₂ NiO ₂ 218.5 (218)	43.72 43.98	4.57 4.61	orangerot	150/ ^{b)}
11	C ₁₀ H ₁₄ B ₂ NiO ₂ 246.6 (246)	48.44 48.72	5.56 5.72	dunkelrot	flüssig
1 n	$C_{12}H_{20}B_2N_2N_1$ 272.3 (272)	52.80 52.87	7.28 7.39	dunkelrot	40/>250
10	C ₁₆ H ₂₈ B ₂ N ₂ Ni 328.7 (328)	58.36 58.46	8.57 8.59	dunkelrot	flüssig
3	C ₂₂ H ₂₈ B ₄ Ni ₂ O ₄ 517.1 (258 ^{d)})	с)	c)	orangerot	198/ ^{b)}
$11 \cdot BF_3$	C ₁₀ H ₁₄ B ₃ F ₃ NiO ₂ 314.4 (246 ^{e)})	38.02 38.21	4.45 4.49	gelbbraun	-/111
$1 o \cdot BF_3$	C ₁₆ H ₂₈ B ₃ F ₃ N ₂ Ni 396.6 (328°)	48.20 48.46	6.97 7.12	gelbbraun	-/55

^{a)} Massenzahl der häufigsten Isotopenkombination des Molekülpeaks; für Fragmentierungsmuster siehe Lit.^{2a)}. – ^{b)} Schmilzt unter Zersetzung. – ^{c)} Nicht bestimmt. – ^{d)} Halbe Molekülmasse. – ^{e)} M⁺ – BF₃.

 $Bis\{\eta^{5}-[1-(dimethylamino)borol]\}nickel(1n): 3.50 g (29.0 mmol) 2a¹⁾ in 40 ml THF werden bei <math>-78$ °C unter Rühren portionsweise mit 6.63 g (30.2 mmol) NiCl₂ · DME versetzt. Man läßt die Temp. auf Raumtemp. ansteigen und entfernt alles Flüchtige i. Vak. Extraktion mit Pentan, Filtrieren durch Seesand und Kühlen der dunkelroten Lösung auf -78 °C ergibt 1.15 g (29%) dunkelrotes, kristallines 1n, Schmp. 39-41 °C, schwach luftempfindlich, sehr gut

löslich in Pentan. – ¹H-NMR ([D₈]Toluol, –70°C): δ = 5.53 und 5.07 (jeweils m, 2 × 2H, 3- und 4-H), 3.96 (m, 4H, 2-/5-H), 2.61 und 2.47 (jeweils s br, 2 × 6H, 4 Me); Tieftemp.-Reihe: $T_c = 238$ K, Δv (3-/4-H) = 365 Hz, $\Delta G^+ = 49.2 \pm 3$ kJ mol⁻¹; $T_c = 230$ K, Δv (NMe₂) = 11.9 Hz, $\Delta G^+ = 49.6 \pm 3$ kJ mol⁻¹. – ¹³C{¹H}-NMR ([D₈]Toluol, –60°C): δ = 96.8 und 95.9 (jeweils m, C-3 und -4), 77.2 und 71.4 (jeweils m, C-2 und -5), 40.7 und 40.4 (jeweils s, 2 × 2 Me); Tieftemp.-Reihe: $T_c = 243$ K, Δv (C-3/-4) = 64 Hz, $\Delta G^+ = 49.0 \pm 2$ kJ · mol⁻¹; $T_c = 230$ K, Δv (NMe₂) = 20 Hz, $\Delta G^+ = 48.6 \pm 2$ kJ mol⁻¹.

 $Bis \{\eta^5 - [1 - (diethylamino)borol]\}$ nickel (10): Darstellung wie bei 1n aus 7.00 g (47.0 mmol) 2b¹⁾ und 15.50 g (50.2 mmol) NiBr₂ · DME in 60 ml THF. Destillation (10⁻⁷ bar) bei 100°C Ölbadtemp. ergibt 5.42 g (35%) 10 als dunkelrotes, besonders in Lösung luftempfindliches Öl, sehr gut löslich in Pentan. – ¹H-NMR ([D₈]-Toluol, -40° C): $\delta = 5.48$ und 5.07 (jeweils m, 2 × 2H, 3- und 4-H), 3.81 (m, 4H, 2-/5-H), 3.06 und 2.90 (jeweils q, 2×4 H, 4 CH₂), 1.06 und 0.94 (jeweils t, 2×6 H, 4 Me); Tieftemp.-Reihe: $T_{\rm c} = 268$ K, $\Delta v (3-/4-H) = 29$ Hz, $\Delta G^{\pm} = 56.1 \pm 3$ kJ mol⁻¹; $T_{\rm c} = 261 \text{ K} \Delta v (2 \text{ CH}_2) = 16.7 \text{ Hz}, \Delta G^{\pm} = 55.8 \pm 4 \text{ kJ} \cdot \text{mol}^{-1};$ $T_{\rm c} = 258$ K, $\Delta v (2$ Me) = 13.4 Hz, $\Delta G^+ = 55.6 \pm 4$ KJ mol⁻¹. - $^{13}C{^{1}H}-NMR$ ([D₈]Toluol, $-25^{\circ}C$): $\delta = 96.5$ und 95.5 (jeweils m, C-3 und -4), 75.4 und 74.8 (jeweils m, C-2 und -5), 44.3 und 43.8 (jeweils s, 2×2 CH₂); 15.8 und 14.8 (jeweils s, 2×2 Me); Tieftemp.-Reihe: $T_c = 276$ K, Δv (C-2/-5) = 78.1 Hz, $\Delta G^+ = 55.6 \pm 4$ kJ mol^{-1} ; $T_c = 273$ K, Δv (C-3/-4) = 57.8 Hz, $\Delta G^{+} = 55.6 \pm 4$ kJ mol^{-1} ; $T_c = 269$ K, Δv (2 CH₂) = 31.8 Hz, $\Delta G^{+} = 56.1 \pm 4$ kJ mol^{-1} ; $T_c = 276$ K, Δv (2 Me) = 69.9 Hz, $\Delta G^{+} = 55.8 + 4$ kJ mol⁻¹.

Bis[η^5 -(1-methoxyborol)]nickel (11): 1.15 g (4.22 mmol) 1n in 30 ml Pentan werden bei 0°C mit 0.8 ml (20 mmol) Methanol versetzt. Man hält 70 h bei Raumtemp., filtriert dann durch eine 2cm-Schicht Al₂O₃ (7% H₂O) und wäscht mit Pentan bis zum farblosen Ablaufen nach. Entfernen des Solvens i.Vak. ergibt 0.93 g (89%) 11 als dunkelrotes, mäßig luftempfindliches Öl; destilliert i.Vak. (10⁻⁷ bar) bei 100°C Ölbadtemp.; sehr gut löslich in Pentan.

 $Bis[\eta^5-(1-methoxyborol)nickel]$ -Bortrifluorid (11 · BF₃): Man läßt über eine Lösung von 0.49 g (1.99 mmol) 11 in 30 ml Hexan bei 0°C unter kräftigem Rühren 30 min Bortrifluorid streichen, wobei ein gelber Feststoff ausfällt. Entfernen alles Flüchtigen i. Vak. und Waschen mit Hexan liefert 0.55 g (88%) 11 · BF₃ als gelbbraunes Pulver; Zers.-P. 111°C, sehr luft- und hydrolyseempfindlich, unlöslich in unpolaren Lösungsmitteln; in CH₂Cl₂ oder i. Vak. Zersetzung durch Abspaltung von BF₃.

 $Bis\{\eta^5-[1-(diethylamino)borol]\}$ nickel-Bortrifluorid (10 · BF₃): Darstellung wie bei 11 · BF₃; Ausb. 81%. Gelbbraunes, an der Luft rauchendes Pulver; Zers.-P. 55°C.

 $Bis[\eta^{5}-(1-chlorborol)]nickel (1g): Zu 1.20 g (4.40 mmol) 1n in$ 50 ml Hexan kondensiert man bei 0°C 1 ml (12 mmol) Bortrichlorid. Dabei fällt ein gelber Feststoff aus. Man läßt 30 min rührenund bringt dann i.Vak. zur Trockne. Lösen des Rückstands inCH₂Cl₂, Filtrieren durch Seesand und Kristallisation aus Toluol bei<math>-78 °C liefert 1.10 g (98%) orangerote, nahczu luftbeständige Nadeln, Schmp. 158-159 °C; besonders in Lösung sehr hydrolyseempfindlich, in Pentan wenig, in Toluol mäßig löslich, sehr gut löslich in THF und CH₂Cl₂.

 $Bis[\eta^5-(1-bromborol)]nickel$ (1h): Zu 1.45 g (4.41 mmol) 10 in 50 ml Hexan gibt man bei 0°C mit einer Spritze 1 ml (10 mmol) BBr₃, wobei ein gelber Feststoff ausfällt. Nach 30 min engt man zur Trockene ein, kristallisiert bei -78°C aus Toluol und erhält so 1.45 g (95%) braunrote, büschelige Nadeln von 1h, Schmp. 166°C, keine Zers. bis 200 °C; kaum luftempfindlich, löslich in CH_2Cl_2 und THF, mäßig löslich in Toluol, unlöslich in Pentan.

Bis[η^{5} -(1H-borol)]nickel (1a): Zu 0.90 g (3.52 mmol) 1 g in 80 ml Hexañ gibt man bei -78 °C unter Rühren 1.28 g (9.00 mmol) Diisobutylaluminiumhydrid (20proz. Lösung in Hexan) zu. Man läßt die Temp. über Nacht auf Raumtemp. ansteigen, kühlt dann wieder auf -78 °C, wobei orangefarbene Nadeln auskristallisieren. Dekantieren der Mutterlauge, Waschen mit Pentan und Trocknen i. Vak. ergeben eine Hauptfraktion von 1a. Die Mutterlauge wird bei -78 °C mit wenig Aluminiumoxid versetzt; Filtrieren, Trocknen und Sublimieren des Rückstands ergeben weiteres Produkt. Insgesamt werden 445 mg (67%) orangefarbene Kristalle von 1a erhalten, Schmp. 65 °C; in ganż reiner Form kaum luft- und hydrolyseempfindlich, gut löslich in aprotischen Lösungsmitteln. – IR (Toluol): v(BH) = 548 cm⁻¹.

$Bis[\eta^5-(1-tert-butylborol)]nickel (1d)$

a) Zu 0.49 g (1.92 mmol) 1g in 30 ml Hexan tropft man bei -78 °C langsam 2.4 ml einer 1.7 M Lösung von *tert*-Butyllithium in Hexan (4.1 mmol). Beim Erwärmen verfärbt sich die orangegelbe Lösung nach Grünblau. Man hält 1 h bei Raumtemp., chromatographiert dann mit Hexan an Al₂O₃ und erhält durch Kristallisation aus Hexan bei -30 °C 0.27 g (47%) 1d in orangeroten Kristallen, Schmp. 31 °C; luftbeständig, löslich in Pentan, Toluol und CH₂Cl₂.

b) Zu 102 mg (0.55 mmol) 1a in 30 ml Hexan tropft man bei $-78 \,^{\circ}$ C 0.7 ml einer 1.7 M Lösung von *tert*-Butyllithium in Hexan (1.19 mmol). Aufarbeitung wie bei der Darstellung aus 1g liefert 55 mg (34%) 1d.

 $Bis[\eta^5-(1-fluorborol)]nickel (1 f)$: Zu 1.19 g (4.66 mmol) 1g in 50 ml CH₂Cl₂ gibt man 2.20 g (9.85 mmol) TIF und rührt 40 h bei Raumtemp. Einengen zur Trockne und Sublimieren bei 25 °C/10⁻⁷ bar ergeben 0.98 g (94%) 1f als gelbes, mikrokristallines Pulver; Zers.-P. 80 °C; äußerst luft- und hydrolyscempfindlich, löslich in CH₂Cl₂ und Toluol, mäßig löslich in Pentan.

Bis[η^5 -(1-hydroxyborol) Jnickel (1 k): Zu 0.50 g (1.96 mmol) 1g in 50 ml THF gibt man bei 0°C 3.0 g (29.6 mmol) Triethylamin und tropft dann unter Rühren 2.0 ml (110 mmol) dest. Wasser zu. Chromatographie mit THF an Al₂O₃ (7% H₂O) und Kristallisation aus THF bei -78°C ergibt 0.41 g (96%) 1k als orangerote Plättchen; Schmp. 150°C (Zers.) zu einer braungrünen Schmelze; luft- und feuchtigkeitsbeständig, löslich in THF und H₂O, unlöslich in unpolaren organischen Lösungsmitteln. – ¹H-NMR ([D₈]THF, -80°C): $\delta = 5.72$ und 5.36 (jeweils m, 2 × 2H, 3- und 4-H), 3.84 und 3.65 (m, 2 × 2H, 2- und 5-H), 6.79 (s, 2H, 2 OH); Tieftemp.-Reihe: $T_c = 218$ K, Δv (2-/5-H) = 32 Hz, $\Delta G^+ = 45.2 \pm 4$ kJ · mol⁻¹.

 $Bis[\eta^{5}-(t-iodborol)]nickel$ (1i): Zu 100 mg (0.54 mmol) 1a in 15 ml Hexan gibt man bei -78 °C 250 mg (0.64 mmol) BI₃ und erwärmt unter einem leichten Stickstoff-Strom auf Raumtemp. Nach 10 min bringt man zur Trockne, nimmt wieder in Hexan auf und filtriert vom Unlöslichen ab. Durch Entfernen des Solvens i. Vak. erhält man 130 mg (55%) 1i als orangebraunes, lichtempfindliches Pulver; löslich in Toluol.

 $Bis\{\eta^5-[1-(benzyloxy)borol]\}nickel (1m):$ Im NMR-Rohr gibt man zu 40 mg (0.22 mmol) 1a in 0.3 ml [D₆]Benzol 53 mg (0.50 mmol) frisch destillierten Benzaldehyd und erhitzt 5 h auf 100°C. Im ¹H-NMR-Spektrum sind keine Änderungen mehr zu beobachten. Beim Entfernen des Flüchtigen i. Vak. hinterbleibt 1m als rotbraunes Öl.

 $Bis\langle\mu-\{\eta^5:\eta^5:f_{1,3}-bis(1-borolyloxy)propan\}\rangle$ dinickel (3): In einem 100-ml-Schlenkkolben fügt man zu 400 mg (4.55 mmol) Lithium-1,3-propandiolat in 30 ml THF bei -78 °C unter Rühren

1.16 g (4.54 mmol) 1g in 50 ml THF. Nach Erwärmung auf Raumtemp. engt man i.Vak. ein, nimmt den gelben, festen Rückstand in CH₂Cl₂ auf, filtriert durch Kieselgur und erhält durch Kristallisation bei -30° C insgesamt 1.03 g (88%) Produkt, teils als gelben Feststoff, teils als orangerote Kristalle. Erneute Kristallisation der Kristalle ergibt 0.52 g reines **3** als orangefarbene Quader, Schmp. 198°C (Zers.); kaum luftempfindlich, sehr gut löslich in THF, CH₂Cl₂ und Aceton, schlecht löslich in Hexan. – ¹H-NMR ([D₈]Toluol, -80°C): $\delta = 5.46$ und 4.96 (jeweils m, 2 × 2H, 3und 4-H), 4.02 (m, 4H, 2-/5-H), 4.0 (verdeckt, 2 OCH₂), 1.9 (br, 2H, CH₂); Tieftemp.-Reihe: $T_c = 220$ K, Δv (3-/4-H) = 40 Hz, $\Delta G^{\pm} = 46.7 \pm 4$ kJ · mol⁻¹.

Cyclovoltammetrie: Cyclovoltammogramme wurden mit eincm EG & G 175-Programmgeber und einem EG & G 173-Potentiostaten registriert. Als Elektrode diente eine Platin-Inlay-Elektrode, als Bezugselektrode eine gesättigte Kalomelelektrode. Die Meßlösungen in CH₂Cl₂ p.a. waren etwa 0.1 M an NBu₄PF₆ als Leitsalz und 10⁻³ M an elektroaktiver Substanz. Alle Potentiale sind gegen [FeCp₂]⁺/FcCp₂ geeicht, dessen cyclovoltammetrisches Mittelpotential bei 100 mV s⁻¹ 0.48 V gegen die gesättigte Kalomelektrode beträgt²²). Die Meßkurven wurden wie üblich ausgewertet²³).

Strukturbestimmung von 1g: C₈H₈B₂Cl₂Ni, Molmasse 255.4 g mol^{-1} , monoklin, Raumgruppe P2₁ (Nr. 4), a = 630.4(1), b =1178.3(2), $c = 674.7(2) \text{ pm}, \beta = 104.61(3)^{\circ}; V = 0.4849(3) \text{ nm}^3; Z =$ 2; $d_{ber} = 1.749 \text{ g cm}^{-3}$; $\mu = 25.06 \text{ cm}^{-1}$. Enraf-Nonius-CAD4-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung ($\lambda = 70.93$ pm), Graphitmonochromator. Kristallgröße 0.6 · 0.4 · 0.2 mm³; im ω-Scan-Modus wurden bei Raumtemperatur 1463 Reflexe im Beugungswinkelbereich 6 $< 2\Theta < 58^{\circ}$ registriert. Empirische Absorptionskorrektur auf der Basis von PSI-Scans²⁴, Strukturlösung mit Patterson- und nachfolgenden Differenz-Fourier-Synthesen mit SDP²⁵⁾. Verfeinerungsergebnis: Anisotrope Temperaturparameter für die Nichtwasserstoffatome, H-Atome in berechneter Standardgeometrie [mit $B_{(H)} = 1.3 \cdot B_{(C)}$ und C-H 98 pm] mitgeführt, 127 verfeinerte Parameter für 1199 symmetrieunabhängige Reflexe mit $I > 2.5 \sigma(I)$, Korrektur bzgl. sekundärer Extinktion angewandt auf $F_{\rm c} (E = 4.54 \cdot 10^{-7})^{26}, R = 0.040, R_{\rm w} = 0.053 (w^{-1} = \sigma^2 (F_{\rm o}) + 10^{-7})^{26}$ 0.0009 F_o^2), maximale Restelektronendichte 0.3 \cdot 10⁻⁶ e pm^{-3 27}).

Strukturbestimmung von 3 · CH₂Cl₂: C₂₃H₃₀B₄Cl₂Ni₂O₄, Molmasse 602.1 g mol⁻¹, monoklin, Raumgruppe C2/c (Nr. 15), a = $1761(1), b = 1339.6(4), c = 1183(2) \text{ pm}, \beta = 98.90(1)^{\circ}; V = 2.757(8)$ nm³; Z = 8/2; $d_{\text{ber.}} = 1.450 \text{ g cm}^{-3}$; $\mu = 15.94 \text{ cm}^{-1}$. Enraf-Nonius-CAD4-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung (l = 70.93 pm), Graphitmonochromator. Messung bei Raumtemp, im ω-Modus $(2\Theta_{\text{max}} = 60^\circ)$. An einem Kristall von $0.4 \cdot 0.1 \cdot 0.1 \text{ mm}^3$ wurden 1366 Reflexe mit $I > 2\sigma(I)$ vermessen. Ein linearer Intensitätsverlust von insgesamt 2% wurde anhand von Kontrollreflexen hochgerechnet; außerdem wurde eine empirische Absorptionskorrektur auf der Basis von PSI-Scans²⁴⁾ durchgeführt. Die Strukturlösung²⁵⁾ erfolgte nach der Schweratommethode. Das Solvatmolekül CH2Cl2 wurde durch Differenz-Fourier-Synthese gefunden. Nach einer Extinktionskorrektur²⁶⁾ wurden in der abschließenden Verfeinerung mit 1204 unabhängigen Reflexen mit $I > 4\sigma(I)$ und $2\Theta > 8^{\circ}$ die Nichtwasserstoffatome anisotrop verfeinert und die H-Atome an berechneten Lagen (C – H 95 pm) mitgeführt: 160 Parameter, R =0.070, $R_w = 0.069$ mit $w^{-1} = \sigma^2(F_o) + 0.0004 F_o^2$, maximale Restelektronendichte $0.9 \cdot 10^{-6}$ e pm⁻³ bei <100 pm vom Ni-Atom 27).

CAS-Registry-Nummern

1a: 128389-24-2 / 1b: 121545-37-7 / 1c: 128389-33-3 / 1d: 128389-25-3 / 1e: 121545-38-8 / 1f: 128389-26-4 / 1g: 128389-22-0 / 1h: 128389-23-1 / 1i: 128389-28-6 / 1k: 128389-27-5 / 1l: 128389-19-5 /

11 · BF₃: 128389-20-8 / 1m: 128389-29-7 / 1n: 128389-17-3 / 1n · $BF_3: 128389-32-2 \ / \ 1o: \ 128389-18-4 \ / \ 1o \ \cdot \ BF_3: \ 128389-21-9 \ / \ 2a: \ 125379-24-0 \ / \ 2b: \ 125379-25-1 \ / \ 3: \ 128389-30-0 \ / \ 3 \ \cdot \ CH_2Cl_2:$ 128389-31-1 / NiCl₂ · DME: 29046-78-4 / NiBr₂ · DME: 28923-39-9

- ¹⁾ G. E. Herberich, M. Hostalek, R. Laven, R. Boese, Angew. Chem.
- 102 (1990) 330; Angew. Chem. Int. Ed. Engl. 29 (1990) 317. ^{2) 2a)} R. Laven, Dissertation, Technische Hochschule Aachen, 1989. ^{2b)} Röntgenstrukturanalyse: U. Englert.
- ^{3) 3a)} G. E. Herberich, M. Negele, *J. Organomet. Chem.* **350** (1988) 81. ^{3b)} M. Negele, *Dissertation*, Technische Hochschule Aachen, 1986.
- ⁴⁾ G. E. Herberich, I. Hausmann, B. Heßner, M. Negele, *J. Organomet. Chem.* **362** (1989) 259.
- ⁵⁾ G. E. Herberich, H. Ohst, Chem. Ber. 118 (1985) 4303.
- ⁶⁾ G. E. Herberich, H. Ohst, Z. Naturforsch., Teil B, **38** (1983) 1388. ⁷⁾ H. Ohst, Dissertation, Technische Hochschule Aachen, 1984.
- ⁸⁾ G. E. Herberich, G. Greiß, H. F. Heil, J. Müller, Chem. Commun. 1971, 1328.
- ⁹⁾ G. E. Herberich, H. Müller, Angew. Chem. 83 (1971) 1020; Angew. Chem. Int. Ed. Engl. 10 (1971) 937.
- ¹⁰⁾ G. E. Herberich, E. A. Mintz, H. Müller, J. Organomet. Chem. 187 (1980) 17; E. A. Mintz, Organometallics 7 (1988) 1788.
- ¹¹⁾ W. Siebert, R. Full, J. Edwin, K. Kinberger, C. Krüger, J. Organomet. Chem. 131 (1977) 1.
- ¹²⁾ G. E. Herberich, B. Heßner, Chem. Ber. 115 (1982) 3115.
 ¹³⁾ F.-E. Hong, C. W. Eigenbrot, T. P. Fehlner, J. Am. Chem. Soc. 111 (1989) 949.
- ¹⁴⁾ G. E. Herberich, W. Boveleth, B. Heßner, D. P. J. Köffer, M.
- Negele, R. Saive, J. Organomet. Chem. 308 (1986) 153. ¹⁵⁾ G. E. Herberich, B. Heßner, M. Negele, J. A. K. Howard, J. Organomet. Chem. 336 (1987) 29.

- ¹⁶⁾ G. E. Herberich, W. Boveleth, B. Heßner, M. Hostalek, D. P. J. Köffer, M. Negele, J. Organomet. Chem. 319 (1987) 311.
- ¹⁷⁾ G. E. Herberich, B. Heßner, R. Saive, J. Organomet. Chem. 319 (1987) 927.
- ¹⁸⁾ Ouantitativen Aussagen über die relative Orientierung der Borol-Ringe wurde der Torsionswinkel (B-Atom des einen Rings/Projektion des Ni-Atoms auf den Ring/Projektion des Ni-Atoms auf den anderen Borol-Ring/B-Atom des anderen Borol-Rings) zu-
- grundegelegt. ¹⁹⁾ G. E. Herberich, M. Thönnessen, D. Schmitz, J. Organomet. Chem. 191 (1980) 27.
- ²⁰⁾ G. E. Herberich, B. Heßner, H. Ohst, I. Raap, J. Organomet. Chem. 348 (1988) 305.
- ²¹⁾ G. E. Herberich, B. Heßner, M. Hostalek, J. Organomet. Chem. 355 (1988) 473.
- ²²⁾ S. P. Gubin, S. A. Smirnova, L. I. Denisovich, A. A. Lubovich, J. Organomet.Chem. 30 (1971) 243.
- ²³⁾ R. S. Nicholson, Anal. Chem. 38 (1966) 1406.
 ²⁴⁾ A. C. T. North, D. Phillips, F. C. Mathews, Acta Cryst., Sect. A, 24 (1968) 351.
- ²⁵⁾ B. A. Frenz (1978). The Enraf-Nonius CAD4-SDP a Real-Time System for Concurrent X-Ray Data Collection and Crystal Structure Determination, in Computing in Crystallography (H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld, G. C. Bassi, Hrsg.) Delft University, SDP-PLUS, Version 1.1 (1984) und VAXSDP, Version 2.2 (1985).
- ²⁶⁾ W. H. Zachariasen, Acta Crystallogr. 16 (1963) 1139.
- ²⁷⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54674, der Autoren und des Zeitschriftenzitats angefordert werden.

[155/90]